相關(guān)產(chǎn)品推薦更多 >>
關(guān)于智能氣體流量計(jì)的工藝路線分析與加工
點(diǎn)擊次數(shù):2005 發(fā)布時(shí)間:2021-01-08 04:52:48
摘要:針對(duì)智能氣體流量計(jì)內(nèi)部的一種三葉擺線轉(zhuǎn)子,采用加工中心四軸銑削技術(shù)。通過(guò)三葉擺線轉(zhuǎn)子組件的結(jié)構(gòu)基于立式加工中心四軸設(shè)備設(shè)計(jì)了一種能夠方便裝夾轉(zhuǎn)子的工裝,并利用 SolidCAM 軟件多軸加工策略,用常規(guī)標(biāo)準(zhǔn)立銑刀和球頭銑刀完成轉(zhuǎn)子的粗精加工。結(jié)合擺線轉(zhuǎn)子的線型特征,比較了多種四軸銑削轉(zhuǎn)子精加工刀具路徑的優(yōu)缺點(diǎn)。以提高表面粗糙度與加工效率為目的,選擇了一種通過(guò)垂直于曲線并擺動(dòng)球頭銑刀刀具側(cè)傾角的多軸銑削刀具路徑。
引言
智能氣體流量計(jì)廣泛應(yīng)用于油田、化工、城市燃?xì)獾攘髁坑?jì)量裝置,其基表結(jié)構(gòu)主要由殼體、轉(zhuǎn) 子、端板和同步齒輪等零部件組成,其中核心零部件轉(zhuǎn)子的線型、葉片頭數(shù)、形狀和加工精度都會(huì)直接影響智能氣體流量計(jì)的流量范圍度、壓差、噪聲和計(jì)量準(zhǔn)確度等工作性能。
目前國(guó)內(nèi)外智能氣體流量計(jì)大部分采用兩直葉轉(zhuǎn)子,線型大致有漸開(kāi)線型、內(nèi)外擺線型和圓弧線型等。由于設(shè)計(jì)三葉轉(zhuǎn)子和扭葉轉(zhuǎn)子對(duì)工程師的專業(yè)知識(shí)和數(shù)學(xué)有著較高的要求,而且加工工藝性能也低于兩葉轉(zhuǎn)子,所以,三葉轉(zhuǎn)子和扭葉轉(zhuǎn)子在實(shí)際的智能氣體流量計(jì)中應(yīng)用的很少。本文通過(guò)我們研發(fā)的一種三葉轉(zhuǎn)子智能氣體流量計(jì)的工作性能,以三葉轉(zhuǎn)子的四軸加工為例,提出一種能夠滿足單件或小批量試制加工使用的轉(zhuǎn)子工裝,介紹 SolidCAM 中的一種多軸加工策略,以提高三葉轉(zhuǎn)子的研發(fā)試制水平。
1 工藝路線分析
智能氣體流量計(jì)作為容積式計(jì)量?jī)x表,由于在實(shí)際計(jì)量中存在一定的泄漏量,需控制兩根轉(zhuǎn)子之間的間隙、轉(zhuǎn)子與端板的間隙、轉(zhuǎn)子與殼體的間隙,所以其轉(zhuǎn)子有著非常高的加工精度。三葉智能氣體流量計(jì)結(jié)構(gòu)如圖 1 所示,三葉轉(zhuǎn)子組件結(jié)構(gòu)如圖2 所示。兩端軸的不銹鋼材料使用氣動(dòng)壓力機(jī)以過(guò)盈配合壓入轉(zhuǎn)子中,轉(zhuǎn)子為 6061#鋁材。由于只是測(cè)試三葉轉(zhuǎn)子的工作性能,為降低研發(fā)成本,直接使用圓形棒料作為轉(zhuǎn)子毛坯,根據(jù)三葉轉(zhuǎn)子組件結(jié)構(gòu)及加工部位精度要求分析加工工藝路線。
工藝路線及要求:
1) 工序 10: 采用四軸臥式加工中心,使用 V 型塊和壓板固定轉(zhuǎn)子毛坯( 圓形棒料) ,鉆出 3 個(gè)均勻分布的孔以減輕轉(zhuǎn)子重量,留 5mm 不鉆通,加工成M5 螺紋孔,銑出一條找正平面,再加工轉(zhuǎn)子兩端面和壓軸孔,保證轉(zhuǎn)子長(zhǎng)度、兩端平行度、平面度,兩端壓軸孔的同軸度、壓軸孔和兩端平面的垂直度。
2) 工序 20: 采用氣動(dòng)壓力機(jī)將軸Ⅰ壓入轉(zhuǎn)子。完成轉(zhuǎn)子組件半成品如圖 3 所示。
3) 工序 30: 采用四軸立式加工中心,使用專用工裝裝夾固定銑削轉(zhuǎn)子曲面( 截面輪廓) 。
4) 工序 40: 采用氣動(dòng)壓力機(jī)將直軸壓入轉(zhuǎn)子,完成轉(zhuǎn)子組件。
2 三葉轉(zhuǎn)子四軸加工工裝
目前量產(chǎn)中的轉(zhuǎn)子都是型材毛坯,采用成型砂輪磨削或者定制成型銑刀進(jìn)行加工轉(zhuǎn)子曲面。這種加工方式工藝成熟,適合大批量生產(chǎn),而且有利于轉(zhuǎn)子線型的技術(shù)保密,但加工方式在研發(fā)試制中應(yīng)用試制加工周期會(huì)很長(zhǎng),而且成本很高,不適合單件或小批量試制。為此,筆者基于四軸立式加工中心,結(jié)合三葉轉(zhuǎn)子加工工藝提出一種工裝,如圖 4所示。將這套工裝定位在立式加工中心四軸回轉(zhuǎn)中心上,加工裝夾方式如圖 5 所示。用機(jī)床尾軸頂住轉(zhuǎn)子來(lái)增強(qiáng)加工剛性避免切削時(shí)產(chǎn)生震顫。
3 數(shù)控加工
3. 1 三葉轉(zhuǎn)子銑削原理
三葉轉(zhuǎn)子的曲面是由多條直線組成的直紋面,加工三葉轉(zhuǎn)子這種高精度的直紋曲面必須采用四軸或五軸聯(lián)動(dòng)的數(shù)控機(jī)床。三葉轉(zhuǎn)子的銑削方式有刀具路徑平行軸線銑削、繞軸線銑削兩種刀具路徑。平行軸線銑削原理為: 刀具在轉(zhuǎn)子曲面上沿 X軸從轉(zhuǎn)子的一端移動(dòng)到另一端銑出一條直線,銑削下一點(diǎn)位時(shí)旋轉(zhuǎn) A 軸 Z 軸聯(lián)動(dòng)再次從轉(zhuǎn)子一端銑削到另一端,采用往復(fù)銑削直到完成整個(gè)轉(zhuǎn)子曲面,刀具路徑如圖 6 所示。繞軸線銑削原理為: 刀具在轉(zhuǎn)子曲面上 AZ 軸聯(lián)動(dòng)刀具繞 A 軸軸線銑削,銑削下一點(diǎn)位時(shí)移動(dòng) X 軸,再次 AZ 軸進(jìn)行聯(lián)動(dòng)銑削,采用往復(fù)銑削直到完成整個(gè)轉(zhuǎn)子曲面,刀具路徑如圖 7 所示。由于繞軸銑削需要 AZ 軸聯(lián)動(dòng)切削,而數(shù)控機(jī)床可以達(dá)到的進(jìn)給率是由*慢的軸決定的,所以,這種刀具路徑在精加工高速銑削時(shí)并不適用。
四軸加工中采用球頭銑刀,刀軸控制策略是提高加工效率和轉(zhuǎn)子曲面表面粗糙度的關(guān)鍵。如圖 8所示,刀軸控制策略有常見(jiàn)的刀軸過(guò)軸線、側(cè)傾角、刀軸平行于軸線。筆者采用平行軸線銑削加工方式對(duì)這 3 種刀軸控制策略進(jìn)行實(shí)際加工對(duì)比,得出采用側(cè)傾角刀軸控制策略加工出的轉(zhuǎn)子曲面表面粗糙度*好。其原因主要由于刀軸平行于軸線這種刀軸控制策略采用球頭銑刀加工時(shí),其刀具切削轉(zhuǎn)子曲面時(shí)的接觸點(diǎn)為刀具的頂部,球頭銑刀的頂部直徑為零,線速度也為零。此時(shí)刀具是在擠壓工件,刀具頂部也容易磨損。刀軸過(guò)軸線策略雖然刀具與轉(zhuǎn)子曲面的接觸點(diǎn)一直在變換,但是也有刀位點(diǎn)是采用刀具頂部去切削。側(cè)前傾角刀軸控制策略: 控制刀具與轉(zhuǎn)子曲面接觸點(diǎn)的位置,避免球頭銑刀頂部銑削轉(zhuǎn)子曲面,實(shí)現(xiàn)刀尖的點(diǎn)的偏離,提高刀具切削點(diǎn)的線速度。球頭銑刀頂部切削和非頂部切削如圖 9 所示。
3. 2 三葉轉(zhuǎn)子 CAM 編程過(guò)程
SolidCAM 軟件四軸加工具有多軸粗精銑、豐富的刀軸控制策略、刀具碰撞及干涉檢查、多軸機(jī)床仿真、生成數(shù)控機(jī)床 NC 代碼等功能。此處筆者以SolidCAM 多軸加工中的垂直于曲線加工策略為例闡述粗精加工編程過(guò)程。*一步: 加載 Solidworks三維模型并設(shè)置軟件四軸加工環(huán)境; *二步: 添加刀具,粗加工采用直徑為 10mm 的立銑刀,精加工采用直徑為 6mm 的球頭銑刀; *三步: 創(chuàng)建粗加工程序,打開(kāi)多軸加工中的垂直于曲線加工; *四步: “驅(qū)動(dòng)曲面”選擇三葉轉(zhuǎn)子曲面,“引導(dǎo)曲線”選擇三葉轉(zhuǎn)子截面輪廓,將驅(qū)動(dòng)曲面余量設(shè)置為 0. 2mm;*五步: 選擇已添加的立銑刀,并設(shè)置刀具切削參數(shù); *六步: 設(shè)置切削步距為 1mm、旋轉(zhuǎn)軸為 X 軸;*七步: 計(jì)算刀具路徑,完成粗加工程序; *八步:拷貝粗加工操作過(guò)程,驅(qū)動(dòng)曲面余量更改為 0mm,刀具更改為直徑為 6mm 的精加工球頭銑刀,切削步距更改為 0. 25mm; *九步: 設(shè)置刀軸控制方向?yàn)橄鄬?duì)切削方向傾斜,側(cè)傾角為 15°; *十步: 將曲面的切削公差設(shè)置為 0. 005mm( 控制三葉轉(zhuǎn)子曲面輪廓度誤差) ,計(jì)算刀具路徑; *十一步: 對(duì)粗精加工刀具路徑操作進(jìn)行三維模擬仿真,觀察刀具軌跡是否正確,并生成 G 代碼。
3. 3 三葉轉(zhuǎn)子曲面尺寸控制
智能氣體流量計(jì)中的兩對(duì)轉(zhuǎn)子嚙合間隙尺寸非常重要,定出合理的嚙合間隙需要加工多種轉(zhuǎn)子尺寸進(jìn)行測(cè)試驗(yàn)證。實(shí)際加工常用的尺寸控制方法有兩種: 一種是通過(guò)電腦 CAM 軟件進(jìn)行調(diào)整加工尺寸,在 SolidCAM 軟件中通過(guò)更改驅(qū)動(dòng)曲面余量尺寸,即可調(diào)整轉(zhuǎn)子尺寸,這種方法更改時(shí)要重新生成加工 G 代碼導(dǎo)入到機(jī)床進(jìn)行加工,機(jī)床與電腦聯(lián)網(wǎng)時(shí)會(huì)考慮采用這種方式; 另一種是通過(guò)數(shù)控機(jī)床控制器補(bǔ)償,在 CAM 軟件生成 G 代碼時(shí)需加入 G43刀具長(zhǎng)度補(bǔ)償指令,加工時(shí)調(diào)整轉(zhuǎn)子尺寸時(shí)只需要更改數(shù)控機(jī)床上的刀具長(zhǎng)度補(bǔ)償值。
4 結(jié)語(yǔ)
本文分析了三葉轉(zhuǎn)子的結(jié)構(gòu),編制了加工工藝過(guò)程,設(shè)計(jì)的三葉轉(zhuǎn)子工裝方便裝夾、操作簡(jiǎn)單,同時(shí)運(yùn)用 CAM 軟件合理選擇加工策略,詳細(xì)講解了使用球頭銑刀在多軸加工中設(shè)置側(cè)傾角可以避免刀具線速度為零的問(wèn)題。這些加工工藝、工裝、尺寸控制方法、編程技巧只要稍做改變就能應(yīng)用于智能氣體流量計(jì)中的兩葉轉(zhuǎn)子、三葉螺旋轉(zhuǎn)子,提高新產(chǎn)品研發(fā)試制周期。
關(guān)于智能氣體流量計(jì)的工藝路線分析與加工
引言
智能氣體流量計(jì)廣泛應(yīng)用于油田、化工、城市燃?xì)獾攘髁坑?jì)量裝置,其基表結(jié)構(gòu)主要由殼體、轉(zhuǎn) 子、端板和同步齒輪等零部件組成,其中核心零部件轉(zhuǎn)子的線型、葉片頭數(shù)、形狀和加工精度都會(huì)直接影響智能氣體流量計(jì)的流量范圍度、壓差、噪聲和計(jì)量準(zhǔn)確度等工作性能。
目前國(guó)內(nèi)外智能氣體流量計(jì)大部分采用兩直葉轉(zhuǎn)子,線型大致有漸開(kāi)線型、內(nèi)外擺線型和圓弧線型等。由于設(shè)計(jì)三葉轉(zhuǎn)子和扭葉轉(zhuǎn)子對(duì)工程師的專業(yè)知識(shí)和數(shù)學(xué)有著較高的要求,而且加工工藝性能也低于兩葉轉(zhuǎn)子,所以,三葉轉(zhuǎn)子和扭葉轉(zhuǎn)子在實(shí)際的智能氣體流量計(jì)中應(yīng)用的很少。本文通過(guò)我們研發(fā)的一種三葉轉(zhuǎn)子智能氣體流量計(jì)的工作性能,以三葉轉(zhuǎn)子的四軸加工為例,提出一種能夠滿足單件或小批量試制加工使用的轉(zhuǎn)子工裝,介紹 SolidCAM 中的一種多軸加工策略,以提高三葉轉(zhuǎn)子的研發(fā)試制水平。
1 工藝路線分析
智能氣體流量計(jì)作為容積式計(jì)量?jī)x表,由于在實(shí)際計(jì)量中存在一定的泄漏量,需控制兩根轉(zhuǎn)子之間的間隙、轉(zhuǎn)子與端板的間隙、轉(zhuǎn)子與殼體的間隙,所以其轉(zhuǎn)子有著非常高的加工精度。三葉智能氣體流量計(jì)結(jié)構(gòu)如圖 1 所示,三葉轉(zhuǎn)子組件結(jié)構(gòu)如圖2 所示。兩端軸的不銹鋼材料使用氣動(dòng)壓力機(jī)以過(guò)盈配合壓入轉(zhuǎn)子中,轉(zhuǎn)子為 6061#鋁材。由于只是測(cè)試三葉轉(zhuǎn)子的工作性能,為降低研發(fā)成本,直接使用圓形棒料作為轉(zhuǎn)子毛坯,根據(jù)三葉轉(zhuǎn)子組件結(jié)構(gòu)及加工部位精度要求分析加工工藝路線。
工藝路線及要求:
1) 工序 10: 采用四軸臥式加工中心,使用 V 型塊和壓板固定轉(zhuǎn)子毛坯( 圓形棒料) ,鉆出 3 個(gè)均勻分布的孔以減輕轉(zhuǎn)子重量,留 5mm 不鉆通,加工成M5 螺紋孔,銑出一條找正平面,再加工轉(zhuǎn)子兩端面和壓軸孔,保證轉(zhuǎn)子長(zhǎng)度、兩端平行度、平面度,兩端壓軸孔的同軸度、壓軸孔和兩端平面的垂直度。
2) 工序 20: 采用氣動(dòng)壓力機(jī)將軸Ⅰ壓入轉(zhuǎn)子。完成轉(zhuǎn)子組件半成品如圖 3 所示。
3) 工序 30: 采用四軸立式加工中心,使用專用工裝裝夾固定銑削轉(zhuǎn)子曲面( 截面輪廓) 。
4) 工序 40: 采用氣動(dòng)壓力機(jī)將直軸壓入轉(zhuǎn)子,完成轉(zhuǎn)子組件。
2 三葉轉(zhuǎn)子四軸加工工裝
目前量產(chǎn)中的轉(zhuǎn)子都是型材毛坯,采用成型砂輪磨削或者定制成型銑刀進(jìn)行加工轉(zhuǎn)子曲面。這種加工方式工藝成熟,適合大批量生產(chǎn),而且有利于轉(zhuǎn)子線型的技術(shù)保密,但加工方式在研發(fā)試制中應(yīng)用試制加工周期會(huì)很長(zhǎng),而且成本很高,不適合單件或小批量試制。為此,筆者基于四軸立式加工中心,結(jié)合三葉轉(zhuǎn)子加工工藝提出一種工裝,如圖 4所示。將這套工裝定位在立式加工中心四軸回轉(zhuǎn)中心上,加工裝夾方式如圖 5 所示。用機(jī)床尾軸頂住轉(zhuǎn)子來(lái)增強(qiáng)加工剛性避免切削時(shí)產(chǎn)生震顫。
3 數(shù)控加工
3. 1 三葉轉(zhuǎn)子銑削原理
三葉轉(zhuǎn)子的曲面是由多條直線組成的直紋面,加工三葉轉(zhuǎn)子這種高精度的直紋曲面必須采用四軸或五軸聯(lián)動(dòng)的數(shù)控機(jī)床。三葉轉(zhuǎn)子的銑削方式有刀具路徑平行軸線銑削、繞軸線銑削兩種刀具路徑。平行軸線銑削原理為: 刀具在轉(zhuǎn)子曲面上沿 X軸從轉(zhuǎn)子的一端移動(dòng)到另一端銑出一條直線,銑削下一點(diǎn)位時(shí)旋轉(zhuǎn) A 軸 Z 軸聯(lián)動(dòng)再次從轉(zhuǎn)子一端銑削到另一端,采用往復(fù)銑削直到完成整個(gè)轉(zhuǎn)子曲面,刀具路徑如圖 6 所示。繞軸線銑削原理為: 刀具在轉(zhuǎn)子曲面上 AZ 軸聯(lián)動(dòng)刀具繞 A 軸軸線銑削,銑削下一點(diǎn)位時(shí)移動(dòng) X 軸,再次 AZ 軸進(jìn)行聯(lián)動(dòng)銑削,采用往復(fù)銑削直到完成整個(gè)轉(zhuǎn)子曲面,刀具路徑如圖 7 所示。由于繞軸銑削需要 AZ 軸聯(lián)動(dòng)切削,而數(shù)控機(jī)床可以達(dá)到的進(jìn)給率是由*慢的軸決定的,所以,這種刀具路徑在精加工高速銑削時(shí)并不適用。
四軸加工中采用球頭銑刀,刀軸控制策略是提高加工效率和轉(zhuǎn)子曲面表面粗糙度的關(guān)鍵。如圖 8所示,刀軸控制策略有常見(jiàn)的刀軸過(guò)軸線、側(cè)傾角、刀軸平行于軸線。筆者采用平行軸線銑削加工方式對(duì)這 3 種刀軸控制策略進(jìn)行實(shí)際加工對(duì)比,得出采用側(cè)傾角刀軸控制策略加工出的轉(zhuǎn)子曲面表面粗糙度*好。其原因主要由于刀軸平行于軸線這種刀軸控制策略采用球頭銑刀加工時(shí),其刀具切削轉(zhuǎn)子曲面時(shí)的接觸點(diǎn)為刀具的頂部,球頭銑刀的頂部直徑為零,線速度也為零。此時(shí)刀具是在擠壓工件,刀具頂部也容易磨損。刀軸過(guò)軸線策略雖然刀具與轉(zhuǎn)子曲面的接觸點(diǎn)一直在變換,但是也有刀位點(diǎn)是采用刀具頂部去切削。側(cè)前傾角刀軸控制策略: 控制刀具與轉(zhuǎn)子曲面接觸點(diǎn)的位置,避免球頭銑刀頂部銑削轉(zhuǎn)子曲面,實(shí)現(xiàn)刀尖的點(diǎn)的偏離,提高刀具切削點(diǎn)的線速度。球頭銑刀頂部切削和非頂部切削如圖 9 所示。
3. 2 三葉轉(zhuǎn)子 CAM 編程過(guò)程
SolidCAM 軟件四軸加工具有多軸粗精銑、豐富的刀軸控制策略、刀具碰撞及干涉檢查、多軸機(jī)床仿真、生成數(shù)控機(jī)床 NC 代碼等功能。此處筆者以SolidCAM 多軸加工中的垂直于曲線加工策略為例闡述粗精加工編程過(guò)程。*一步: 加載 Solidworks三維模型并設(shè)置軟件四軸加工環(huán)境; *二步: 添加刀具,粗加工采用直徑為 10mm 的立銑刀,精加工采用直徑為 6mm 的球頭銑刀; *三步: 創(chuàng)建粗加工程序,打開(kāi)多軸加工中的垂直于曲線加工; *四步: “驅(qū)動(dòng)曲面”選擇三葉轉(zhuǎn)子曲面,“引導(dǎo)曲線”選擇三葉轉(zhuǎn)子截面輪廓,將驅(qū)動(dòng)曲面余量設(shè)置為 0. 2mm;*五步: 選擇已添加的立銑刀,并設(shè)置刀具切削參數(shù); *六步: 設(shè)置切削步距為 1mm、旋轉(zhuǎn)軸為 X 軸;*七步: 計(jì)算刀具路徑,完成粗加工程序; *八步:拷貝粗加工操作過(guò)程,驅(qū)動(dòng)曲面余量更改為 0mm,刀具更改為直徑為 6mm 的精加工球頭銑刀,切削步距更改為 0. 25mm; *九步: 設(shè)置刀軸控制方向?yàn)橄鄬?duì)切削方向傾斜,側(cè)傾角為 15°; *十步: 將曲面的切削公差設(shè)置為 0. 005mm( 控制三葉轉(zhuǎn)子曲面輪廓度誤差) ,計(jì)算刀具路徑; *十一步: 對(duì)粗精加工刀具路徑操作進(jìn)行三維模擬仿真,觀察刀具軌跡是否正確,并生成 G 代碼。
3. 3 三葉轉(zhuǎn)子曲面尺寸控制
智能氣體流量計(jì)中的兩對(duì)轉(zhuǎn)子嚙合間隙尺寸非常重要,定出合理的嚙合間隙需要加工多種轉(zhuǎn)子尺寸進(jìn)行測(cè)試驗(yàn)證。實(shí)際加工常用的尺寸控制方法有兩種: 一種是通過(guò)電腦 CAM 軟件進(jìn)行調(diào)整加工尺寸,在 SolidCAM 軟件中通過(guò)更改驅(qū)動(dòng)曲面余量尺寸,即可調(diào)整轉(zhuǎn)子尺寸,這種方法更改時(shí)要重新生成加工 G 代碼導(dǎo)入到機(jī)床進(jìn)行加工,機(jī)床與電腦聯(lián)網(wǎng)時(shí)會(huì)考慮采用這種方式; 另一種是通過(guò)數(shù)控機(jī)床控制器補(bǔ)償,在 CAM 軟件生成 G 代碼時(shí)需加入 G43刀具長(zhǎng)度補(bǔ)償指令,加工時(shí)調(diào)整轉(zhuǎn)子尺寸時(shí)只需要更改數(shù)控機(jī)床上的刀具長(zhǎng)度補(bǔ)償值。
4 結(jié)語(yǔ)
本文分析了三葉轉(zhuǎn)子的結(jié)構(gòu),編制了加工工藝過(guò)程,設(shè)計(jì)的三葉轉(zhuǎn)子工裝方便裝夾、操作簡(jiǎn)單,同時(shí)運(yùn)用 CAM 軟件合理選擇加工策略,詳細(xì)講解了使用球頭銑刀在多軸加工中設(shè)置側(cè)傾角可以避免刀具線速度為零的問(wèn)題。這些加工工藝、工裝、尺寸控制方法、編程技巧只要稍做改變就能應(yīng)用于智能氣體流量計(jì)中的兩葉轉(zhuǎn)子、三葉螺旋轉(zhuǎn)子,提高新產(chǎn)品研發(fā)試制周期。
上一篇:氣體浮子流量計(jì)的遠(yuǎn)程監(jiān)控維護(hù)以及遠(yuǎn)程報(bào)警管理介紹
下一篇:淺析定制工業(yè)天然氣流量計(jì)解決方案的優(yōu)勢(shì)